Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
1.
Adv Mater ; : e2400421, 2024 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-38430204

RESUMO

Thanks to the extensive efforts toward optimizing perovskite crystallization properties, high-quality perovskite films with near-unity photoluminescence quantum yield are successfully achieved. However, the light outcoupling efficiency of perovskite light-emitting diodes (PeLEDs) is impeded by insufficient light extraction, which poses a challenge to the further advancement of PeLEDs. Here, an anisotropic multifunctional electron transporting material, 9,10-bis(4-(2-phenyl-1H-benzo[d]imidazole-1-yl)phenyl) anthracene (BPBiPA), with a low extraordinary refractive index (ne ) and high electron mobility is developed for fabricating high-efficiency PeLEDs. The anisotropic molecular orientations of BPBiPA can result in a low ne of 1.59 along the z-axis direction. Optical simulations show that the low ne of BPBiPA can effectively mitigate the surface plasmon polariton loss and enhance the photon extraction efficiency in waveguide mode, thereby improving the light outcoupling efficiency of PeLEDs. In addition, the high electron mobility of BPBiPA can facilitate balanced carrier injection in PeLEDs. As a result, high-efficiency green PeLEDs with a record external quantum efficiency of 32.1% and a current efficiency of 111.7 cd A-1 are obtained, which provides new inspirations for the design of electron transporting materials for high-performance PeLEDs.

2.
Artigo em Chinês | MEDLINE | ID: mdl-38297860

RESUMO

This article discusses otoscopic middle ear mastoid surgery from multiple perspectives. Firstly, it discusses the indications and contraindications for surgery from the nature of the lesion and the imaging manifestations; secondly, it recommends the applicable equipment and describes the surgical approach in detail; finally, it summarizes the principles of the management of the operative cavity of the mastoid process in the middle ear from the perspectives of function and reconstruction. The purpose of this article is to illustrate otoscopic middle ear mastoid surgery with the aim of providing reference or guidance for performing related surgeries.


Assuntos
Colesteatoma da Orelha Média , Processo Mastoide , Humanos , Processo Mastoide/cirurgia , Processo Mastoide/patologia , Consenso , Orelha Média/cirurgia , Orelha Média/patologia , Endoscopia , Colesteatoma da Orelha Média/cirurgia , Colesteatoma da Orelha Média/patologia
3.
Inorg Chem ; 62(51): 20923-20928, 2023 Dec 25.
Artigo em Inglês | MEDLINE | ID: mdl-38059925

RESUMO

Electrocatalytic NO-to-NH3 conversion (NORR) provides a fascinating route toward the eco-friendly and valuable production of NH3. In this study, amorphous FeS2 (a-FeS2) is first demonstrated as a high-efficiency catalyst for the NORR, showing a maximum FENH3 of 92.5% with a corresponding NH3 yield rate of 227.1 µmol h-1 cm-2, outperforming most NORR catalysts reported earlier. Experimental measurements combined with theoretical computations clarify that the exceptional NORR activity of a-FeS2 originates from the amorphization-induced upshift of the d-band center to promote the NO activation and NO-to-NH3 hydrogenation energetics.

4.
Angew Chem Int Ed Engl ; 62(40): e202310047, 2023 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-37593817

RESUMO

The current availability of multi-resonance thermally activated delayed fluorescence (MR-TADF) materials with excellent color purity and high device efficiency in the deep-blue region is appealing. To address this issue in the emerged nitrogen/carbonyl MR-TADF system, we propose a spiro-lock strategy. By incorporating spiro functionalization into a concise molecular skeleton, a series of emitters (SFQ, SOQ, SSQ, and SSeQ) can enhance molecular rigidity, blue-shift the emission peak, narrow the emission band, increase the photoluminescence quantum yield by over 92 %, and suppress intermolecular interactions in the film state. The referent CZQ without spiro structure has a more planar skeleton, and its bluer emission in the solution state redshifts over 40 nm with serious spectrum broadening and a low PLQY in the film state. As a result, SSQ achieves an external quantum efficiency of 25.5 % with a peak at 456 nm and a small full width at half maximum of 31 nm in a simple unsensitized device, significantly outperforming CZQ. This work discloses the importance of spiro-junction in modulating deep-blue MR-TADF emitters.

5.
Org Lett ; 25(32): 6024-6028, 2023 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-37552571

RESUMO

Red through-space charge transfer thermally activated delayed fluorescence (TSCT TADF) materials named SAF36DCPP and SAF27DCPP with sandwiched structures were synthesized. Single crystals indicated that the intramolecular C-H···π interactions play a vital role in rigidifying the sandwiched structure, which results in a fluorescence yield of 63% for SAF36DCPP compared to 40% for SAF27DCPP. Organic light-emitting diodes with SAF36DCPP as the emitter realized a maximum external quantum efficiency of 16.12%.

6.
Angew Chem Int Ed Engl ; 62(22): e202302005, 2023 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-36965042

RESUMO

Perovskite nanocrystals (PeNCs) deliver size- and composition-tunable luminescence of high efficiency and color purity in the visible range. However, attaining efficient electroluminescence (EL) in the near-infrared (NIR) region from PeNCs is challenging, limiting their potential applications. Here we demonstrate a highly efficient NIR light-emitting diode (LED) by doping ytterbium ions into a PeNCs host (Yb3+ : PeNCs), extending the EL wavelengths toward 1000 nm, which is achieved through a direct sensitization of Yb3+ ions by the PeNC host. Efficient quantum-cutting processes enable high photoluminescence quantum yields (PLQYs) of up to 126 % from the Yb3+ : PeNCs. Through halide-composition engineering and surface passivation to improve both PLQY and charge-transport balance, we demonstrate an efficient NIR LED with a peak external quantum efficiency of 7.7 % at a central wavelength of 990 nm, representing the most efficient perovskite-based LEDs with emission wavelengths beyond 850 nm.

7.
J Am Chem Soc ; 145(11): 6428-6433, 2023 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-36897963

RESUMO

Indium phosphide (InP) quantum dots have enabled light-emitting diodes (LEDs) that are heavy-metal-free, narrow in emission linewidth, and physically flexible. However, ZnO/ZnMgO, the electron-transporting layer (ETL) in high-performance red InP/ZnSe/ZnS LEDs, suffers from high defect densities, quenches luminescence when deposited on InP, and induces performance degradation that arises due to trap migration from the ETL to the InP emitting layer. We posited that the formation of Zn2+ traps on the outer ZnS shell, combined with sulfur and oxygen vacancy migration between ZnO/ZnMgO and InP, may account for this issue. We synthesized therefore a bifunctional ETL (CNT2T, 3',3'″,3'″″-(1,3,5-triazine-2,4,6-triyl)tris(([1,1'-biphenyl]-3-carbonitrile)) designed to passivate Zn2+ traps locally and in situ and to prevent vacancy migration between layers: the backbone of the small molecule ETL contains a triazine electron-withdrawing unit to ensure sufficient electron mobility (6 × 10-4 cm2 V-1 s-1), and the star-shaped structure with multiple cyano groups provides effective passivation of the ZnS surface. We report as a result red InP LEDs having an EQE of 15% and a luminance of over 12,000 cd m-2; this represents a record among organic-ETL-based red InP LEDs.

8.
J Hepatol ; 78(4): 742-753, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36587899

RESUMO

BACKGROUND & AIMS: The persistence of covalently closed circular DNA (cccDNA) in infected hepatocytes is the major barrier preventing viral eradication with existing therapies in patients with chronic hepatitis B. Therapeutic agents that can eliminate cccDNA are urgently needed to achieve viral eradication and thus HBV cure. METHODS: A phenotypic assay with HBV-infected primary human hepatocytes (PHHs) was employed to screen for novel cccDNA inhibitors. A HBVcircle mouse model and a uPA-SCID (urokinase-type plasminogen activator-severe combined immunodeficiency) humanized liver mouse model were used to evaluate the anti-HBV efficacy of the discovered cccDNA inhibitors. RESULTS: Potent and dose-dependent reductions in extracellular HBV DNA, HBsAg, and HBeAg levels were achieved upon the initiation of ccc_R08 treatment two days after the HBV infection of PHHs. More importantly, the level of cccDNA was specifically reduced by ccc_R08, while it did not obviously affect mitochondrial DNA. Additionally, ccc_R08 showed no significant cytotoxicity in PHHs or in multiple proliferating cell lines. The twice daily oral administration of ccc_R08 to HBVcircle model mice, which contained surrogate cccDNA molecules, significantly decreased the serum levels of HBV DNA and antigens, and these effects were sustained during the off-treatment follow-up period. Moreover, at the end of follow-up, the levels of surrogate cccDNA molecules in the livers of ccc_R08-treated HBVcircle mice were reduced to below the lower limit of quantification. CONCLUSIONS: We have discovered a small-molecule cccDNA inhibitor that reduces HBV cccDNA levels. cccDNA inhibitors potentially represent a new approach to completely cure patients chronically infected with HBV. IMPACT AND IMPLICATIONS: Covalently closed circular DNA (cccDNA) persistence in HBV-infected hepatocytes is the root cause of chronic hepatitis B. We discovered a novel small-molecule cccDNA inhibitor that can specifically reduce cccDNA levels in HBV-infected hepatocytes. This type of molecule could offer a new approach to completely cure patients chronically infected with HBV.


Assuntos
Hepatite B Crônica , Humanos , Animais , Camundongos , Hepatite B Crônica/tratamento farmacológico , Vírus da Hepatite B , DNA Circular/uso terapêutico , DNA Viral/genética , Replicação Viral , Camundongos SCID , Antivirais/farmacologia , Antivirais/uso terapêutico
9.
Chemistry ; 29(5): e202202628, 2023 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-36250810

RESUMO

Carbonyl-containing derivatives show enduring vitality in the field of thermally activated delayed fluorescence (TADF) materials; they can realize high device efficiency by using both singlet and triplet excitons for electroluminescence. Recently, a system based on fused ketone/amine exhibited huge potential for constructing multi-resonance TADF (MR-TADF) emitters, which exhibit higher narrow-band emission than conventional TADF emitters with twisted donor-acceptor (D-A) structure. Herein, we summarize current research progress in both traditional and MR-type ketone derivatives with TADF characteristics for introducing the molecular design strategy of maintaining high device efficiency while keeping narrow-band emission profile. We hope this review can inspire the emergence of more high-performance narrow-band materials.


Assuntos
Aminas , Citoesqueleto , Fluorescência , Cetonas , Vibração
10.
Eur Arch Otorhinolaryngol ; 280(7): 3119-3129, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-36574064

RESUMO

OBJECTIVES: Sudden sensorineural hearing loss (SSNHL) is one of the common emergencies in otorhinolaryngology. Several studies have shown that chronic inflammation is associated with its onset and prognosis. However, the association between some inflammatory biomarkers and SSNHL is still unclear. Therefore, we conducted this meta-analysis to explore the value of inflammatory biomarkers in the occurrence and prognosis of SSNHL. METHODS: Pubmed, Embase, Cochrane and Web of Science databases were searched comprehensively, the eligible literatures were screened out by formulating the inclusion criteria and exclusion criteria. After extracting sample size, mean and standard deviation, we performed meta-analysis with standardized mean deviation (SMD) and 95% confidence interval (CI) as effect sizes. RESULTS: A total of 17 articles were included in this meta-analysis, including 2852 subjects, 1423 patients and 1429 healthy controls. The results of meta-analysis showed that the neutrophil-to-lymphocyte ratio (NLR) of the experimental group was significantly higher than the control group (SMD = 1.05, 95% CI 0.87-1.24, P < 0.001), the NLR of the recovery group was significantly lower than the unrecovered group (SMD = 0.68, 95% CI 0.27-1.08, P < 0.05); The platelet-to-lymphocyte ratio (PLR) of the experimental group was significantly higher than the control group (SMD = 0.55, 95% CI 0.34-0.76, P < 0.05), the PLR of the recovery group was significantly lower than the unrecovered group (SMD = 0.44, 95% CI 0.05-0.82, P < 0.05); The C-reactive protein-to-serum albumin ratio (CRP/Alb) of the experimental group was significantly higher than the control group (SMD = 0.39, 95% CI 0.04-0.74, P < 0.05). CONCLUSIONS: The results showed that high NLR, PLR, and CRP/Alb indicated the occurrence of SSNHL, NLR and PLR could predict prognosis of SSNHL.


Assuntos
Perda Auditiva Neurossensorial , Perda Auditiva Súbita , Humanos , Contagem de Linfócitos , Prognóstico , Biomarcadores , Linfócitos , Neutrófilos , Perda Auditiva Neurossensorial/diagnóstico , Perda Auditiva Súbita/diagnóstico
11.
Small ; 19(11): e2205336, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36581559

RESUMO

Functional passivators are conventionally utilized in modifying the crystallization properties of perovskites to minimize the non-radiative recombination losses in perovskite light-emitting diodes (PeLEDs). However, the weak anchor ability of some commonly adopted molecules has limited passivation ability to perovskites and even may desorb from the passivated defects in a short period of time, which bring about plenty of challenges for further development of high-performance PeLEDs. Here, a multidentate molecule, formamidine sulfinic acid (FSA), is introduced as a novel passivator to perovskites. FSA has multifunctional groups (S≐O, C≐N and NH2 ) where the S≐O and C≐N groups enable coordination with the lead ions and the NH2 interacts with the bromide ions, thus providing the most effective chemical passivation for defects and in turn the formation of highly stable perovskite emitters. Moreover, the interaction between the FSA and octahedral [PbBr6 ]4- can inhibit the formation of unfavorable low-n domains to further minimize the inefficient energy transfer inside the perovskite emitters. Therefore, the FSA passivated green-emitting PeLED exhibits a high external quantum efficiency (EQE) of 26.5% with fourfold enhancement in operating lifetime as compared to the control device, consolidating that the multidentate molecule is a promising strategy to effectively and sustainably passivate the perovskites.

12.
Molecules ; 27(13)2022 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-35807295

RESUMO

The employment of thermally activated delayed fluorescence (TADF) emitters is one of the most promising ways to realize the external quantum efficiency (EQE) of over 25% for organic light-emitting diodes (OLEDs). In addition, the TADF emitter based on oxygen-bridged boron (BO) fragment can maintain blue emission with high color purity. Herein, we constructed two blue TADF emitters, 3TBO and 5TBO, for OLEDs application. Both emitters consist of three donors linked at the oxygen-bridged boron acceptor. OLED devices based on 3TBO and 5TBO exhibited both high excellent device efficiency and high color purity with a maximum EQE; full-width at half-maximum (FWHM); and CIE coordinates of 17.3%, 47 nm, (0.120, 0.294), and 26.2%, 57 nm, (0.125, 0.275), respectively.

13.
Angew Chem Int Ed Engl ; 61(34): e202206861, 2022 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-35689409

RESUMO

Organic materials with multi-stimulus response (MSR) properties have demonstrated many potential and practical applications. Herein, a π-stacked thermally activated delayed fluorescence (TADF) material with multi-stimulus response (MSR) properties, named SDMAC, was designed and synthesized using distorted 9,9-dimethyl-10-phenyl-9,10-dihydroacridine as a donor. SDMAC possesses a rigid π-stacked configuration with intramolecular through-space interactions and exhibits aggregation-induced emission enhancement (AIEE), solvatochromic, piezochromic, and circularly polarized luminescence (CPL) under different external stimuli. The rigid molecular structure and efficient TADF properties of SDMAC can be used in displays and lighting. Using SDMAC as an emitter, the maximum external quantum efficiency (EQE) of the fabricated organic light-emitting diodes (OLEDs) is as high as 28.4 %, which make them the most efficient CP-TADF OLEDs based on the through-space charge transfer strategy. The CP organic light-emitting diodes (CP-OLEDs) exhibit circularly polarized electroluminescence (CPEL) signals.

14.
Front Neurosci ; 16: 816712, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35431781

RESUMO

Background: Tinnitus can interfere with a patient's speech discrimination, but whether tinnitus itself or the accompanying sensorineural hearing loss (SNHL) causes this interference is still unclear. We analyzed event-related electroencephalograms (EEGs) to observe auditory-related brain function and explore the possible effects of SNHL on auditory processing in tinnitus patients. Methods: Speech discrimination scores (SDSs) were recorded in 21 healthy control subjects, 24 tinnitus patients, 24 SNHL patients, and 27 patients with both SNHL and tinnitus. EEGs were collected under an oddball paradigm. Then, the mismatch negativity (MMN) amplitude and latency, the clustering coefficient and average path length of the whole network in the tinnitus and SNHL groups were compared with those in the control group. Additionally, we analyzed the intergroup differences in functional connectivity among the primary auditory cortex (AC), parahippocampal gyrus (PHG), and inferior frontal gyrus (IFG). Results: SNHL patients with or without tinnitus had lower SDSs than the control subjects. Compared with control subjects, tinnitus patients with or without SNHL had decreased MMN amplitudes, and SNHL patients had longer MMN latencies. Tinnitus patients without SNHL had a smaller clustering coefficient and a longer whole-brain average path length than the control subjects. SNHL patients with or without tinnitus had a smaller clustering coefficient and a longer average path length than patients with tinnitus alone. The connectivity strength from the AC to the PHG and IFG was lower on the affected side in tinnitus patients than that in control subjects; the connectivity strength from the PHG to the IFG was also lower on the affected side in tinnitus patients than that in control subjects. However, the connectivity strength from the IFG to the AC was stronger in tinnitus patients than that in the control subjects. In SNHL patients with or without tinnitus, these changes were magnified. Conclusion: Changes in auditory processing in tinnitus patients do not influence SDSs. Instead, SNHL might cause the activity of the AC, PHG and IFG to change, resulting in impaired speech recognition in tinnitus patients with SNHL.

15.
Adv Mater ; 34(21): e2200854, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35297516

RESUMO

Instability in mixed-halide perovskites (MHPs) is a key issue limiting perovskite solar cells and light-emitting diodes (LEDs). One form of instability arises during the processing of MHP quantum dots using an antisolvent to precipitate and purify the dots forming surface traps that lead to decreased luminescence, compromised colloidal stability, and emission broadening. Here, the introduction of inorganic ligands in the antisolvents used in dot purification is reported in order to overcome this problem. MHPs that are colloidally stable for over 1 year at 25 °C and 40% humidity are demonstrated and films that are stable under 100 W cm-2 photoirradiation, 4× longer than the best previously reported MHPs, are reported. In LEDs, the materials enable an EQE of 24.4% (average 22.5 ± 1.3%) and narrow emission (full-width at half maximum of 30 nm). Sixfold-enhanced operating stability relative to the most stable prior red perovskite LEDs having external quantum efficiency >20% is reported.

16.
Angew Chem Int Ed Engl ; 61(22): e202117857, 2022 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-35290693

RESUMO

Optical interconnects exhibit superior potential in the precise regulation of photon transmission for organic photonic circuits. However, the rational design of well-defined organic heterostructures toward active optoelectronics remains challenging. Herein, we designed organic branched heterostructures (OBHs) with accurate spatial organization for optical interconnection. Notably, the precise regulation of OBHs has been controllably achieved including the trunk morphologies and the branched microwire number. Significantly, these as-prepared OBHs inherently exhibit the multichannel coupling outputs and the excitation position-dependent waveguide characteristics, leading to various outcoupling signals with tunable intensity and emission colors. The optical interconnects are realized due to the occurrence of exciton conversion and photon propagation between branch and trunk at the heterojunction, benefiting the application possibilities of two-dimensional (2D) optical barcodes.

17.
Cell Mol Life Sci ; 79(2): 79, 2022 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-35044530

RESUMO

The Hippo/Yes-associated protein (YAP) signaling pathway has been shown to be able to maintain organ size and homeostasis by regulating cell proliferation, differentiation, and apoptosis. The abuse of aminoglycosides is one of the main causes of sensorineural hearing loss (SSNHL). However, the role of the Hippo/YAP signaling pathway in cochlear hair cell (HC) damage protection in the auditory field is still unclear. In this study, we used the YAP agonist XMU-MP-1 (XMU) and the inhibitor Verteporfin (VP) to regulate the Hippo/YAP signaling pathway in vitro. We showed that YAP overexpression reduced neomycin-induced HC loss, while downregulated YAP expression increased HC vulnerability after neomycin exposure in vitro. We next found that activation of YAP expression inhibited C-Abl-mediated cell apoptosis, which led to reduced HC loss. Many previous studies have reported that the level of reactive oxygen species (ROS) is significantly increased in cochlear HCs after neomycin exposure. In our study, we also found that YAP overexpression significantly decreased ROS accumulation, while downregulation of YAP expression increased ROS accumulation. In summary, our results demonstrate that the Hippo/YAP signaling pathway plays an important role in reducing HC injury and maintaining auditory function after aminoglycoside exposure. YAP overexpression could protect against neomycin-induced HC loss by inhibiting C-Abl-mediated cell apoptosis and decreasing ROS accumulation, suggesting that YAP could be a novel therapeutic target for aminoglycosides-induced sensorineural hearing loss in the clinic.


Assuntos
Antibacterianos/efeitos adversos , Células Ciliadas Auditivas/efeitos dos fármacos , Via de Sinalização Hippo/efeitos dos fármacos , Neomicina/efeitos adversos , Proteínas de Sinalização YAP/metabolismo , Animais , Células Ciliadas Auditivas/metabolismo , Células Ciliadas Auditivas/patologia , Camundongos , Fatores de Proteção , Inibidores da Síntese de Proteínas/efeitos adversos , Transdução de Sinais/efeitos dos fármacos
18.
Adv Mater ; 33(45): e2103640, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34558117

RESUMO

Metal halide perovskite semiconductors have demonstrated remarkable potentials in solution-processed blue light-emitting diodes (LEDs). However, the unsatisfied efficiency and spectral stability responsible for trap-mediated non-radiative losses and halide phase segregation remain the primary unsolved challenges for blue perovskite LEDs. In this study, it is reported that a fluorene-based π-conjugated cationic polymer can be blended with the perovskite semiconductor to control film formation and optoelectronic properties. As a result, sky-blue and true-blue perovskite LEDs with Commission Internationale de l'Eclairage coordinates of (0.08, 0.22) and (0.12, 0.13) at the record external quantum efficiencies of 11.2% and 8.0% were achieved. In addition, the mixed halide perovskites with the conjugated cationic polymer exhibit excellent spectral stability under external bias. This result illustrates that π-conjugated cationic polymers have a great potential to realize efficient blue mixed-halide perovskite LEDs with stable electroluminescence.

19.
J Phys Chem Lett ; 12(26): 6034-6040, 2021 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-34165312

RESUMO

Triplet excitons can be utilized upon introduction of phosphors into exciplexes, and such a scenario has been studied in the development of high-performance near-infrared (NIR) organic light-emitting diodes (OLEDs). To generate exciplexes in an emitting layer (EML) in the device, commercially available phosphors bis(2-phenylpyridinato-N,C2')iridium(acetylacetonate) [Ir(ppy)2acac] and iridium(III) bis(4-phenylthieno[3,2-c]pyridinato-N,C2')acetylacetonate (PO-01) were selected as donor components; in addition, a new designed fluorescent molecule, 3-([1,1':3',1″-terphenyl]-5'-yl)acenaphtho[1,2-b]quinoxaline-9,10-dicarbonitrile (AQDC-tPh), and recently reported 3-([1,1':3',1″-terphenyl]-5'-yl)acenaphtho[1,2-b]pyrazine-8,9-dicarbonitrile (APDC-tPh) were selected as acceptor components. An OLED with PO-01:AQDC-tPh blends as the EML has realized NIR emission at 750 nm and a maximum external quantum efficiency (EQE) of >0.23%. Furthermore, an OLED containing a PO-01:APDC-tPh blend realizes a maximum EQE of 0.16% at 824 nm. The high performance of these devices underlying phosphor-based exciplexes proves the potential and feasibility of our strategy for the construction of efficient NIR OLEDs.

20.
iScience ; 24(2): 102123, 2021 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-33659882

RESUMO

Near-infrared (NIR) emission is useful for numerous practical applications, such as communication, biomedical sensors, night vision, etc., which encourages researchers to develop materials and devices for the realization of efficient NIR organic light-emitting devices. Recently, the emerging organic thermally activated delayed fluorescence (TADF) emitters have attracted wide attention because of the full utilization of electron-generated excitons, which is crucial for achieving high device efficiency. Up to now, the TADF emitters have shown their potential in the deep red/NIR region. Considering the color purity and efficiency, however, the development of NIR TADF emitters still lags behind RGB TADF emitters, indicating that there is still much room to improve their performance. In this regard, this perspective mainly summarizes the past progress of molecular design on constructing TADF NIR emitters. We hope this perspective could provide a new vista in developing NIR materials and enlighten breakthroughs in both fundamental research and applications.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...